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Let’s think of Juku’s alphabet as an undirected, unweighted graph. Every letter is a vertex, and if two of
them appear consecutively in one of the common words, there is an edge between them. It is possible
to divide the letters between the left and the right half of the keyboard iff this graph is bipartite. This
property can be checked easily: Start a depth-first search from each vertex that was not visited yet,
and color the nodes alternatingly either red or blue. If this does not work, because some vertex needs
to be assigned both colors simultaneously (i.e. there is a cycle of odd length in the graph), just print
impossible. Otherwise, for 10% of the achievable score, it is allowed to print any non-negative
integer and to terminate at this point.
𝑁, the number of characters in the alphabet, is at the same time the number of vertices. Let’s denote
by 𝐸 the number of edges, which is at most 1000000 − 𝑀 (to simplify things, let’s just think of 𝐸 as
being bounded by 1000000). The running time of the algorithm so far is 𝑂(𝑁 + 𝐸).

Subtask 1 (𝟒𝟎 points). 𝑁 ≤ 5000
In this subtask, the number of vertices is bounded by 5000. Let’s assume the algorithm discussed
above has already been executed and it answered that it is not impossible to build an ergonomic
keyboard. Therefore, the remaining task is to partition the vertices of the graph into two sets, such
that the two endpoints of no edge are both in the same set and the absolute difference between the
sizes of the sets is minimal.
In addition to whether the graph is bipartite or not, we need some more information: How the graph
is partitioned into connected components. For each of these components, we also need to know
how many of its vertices have been colored red, and how many have been colored blue. Assume a
component had 𝑟 red and 𝑏 blue vertices. Now, Juku can either put the 𝑟 red vertices on the left side
of the keyboard and the 𝑏 blue ones on the right side or the other way round. Thus, the difference
between the sizes of the two sides either changes by 𝑟 − 𝑏 or by 𝑏 − 𝑟 (this way, the difference can
become negative, although we are interested in the minimum absolute difference in the end).
Now we can reformulate the problem: For each component, we insert the value 𝑎𝑏𝑠(𝑟 − 𝑏) into a
multiset 𝑆 (the actual number of red or blue vertices is irrelevant, only the difference in the sizes
of the two bipartition parts in a connected component matters). Choose a sign (either positive or
negative) for each element in 𝑆, such that the sum of all (signed) elements is as close as possible to
zero. The absolute value of this sum is the expected output. You can think of an element having a
positive sign as a connected component of which the larger part of its bipartition is located on the
left side of the keyboard. If the sign is negative, the larger part of the bipartition is on the right side.
To solve this problem, an algorithm similar to a Dynamic Programming solution for Knapsack can be
used. Let’s denote the elements of 𝑆 by 𝑆 = {𝑠1, … , 𝑠|𝑆|}. Then dp[𝑖][𝑤] is a boolean that is true if it is
possible to assign signs to the first 𝑖 elements in 𝑆, such that these signed elements sum up to exactly
𝑤. The Dynamic Programming values can be calculated as

dp[𝑖][𝑤] = dp[𝑖 − 1][𝑤 − 𝑠𝑖] or dp[𝑖 − 1][𝑤 + 𝑠𝑖].

Since the sum of elements in 𝑆 is bounded by 𝑁, 𝑤 is in the interval [−𝑁, 𝑁]. Thus, to make the indices
for the DP array non-negative, in an implementation for this, it may be necessary to add a fixed offset
of 𝑁 to each 𝑤.
When all these values have been calculated, the result is the minimum |𝑤| for which dp[|𝑆| − 1][𝑤] is
true. The running time of this algorithm is 𝑂(|𝑆| ⋅ 𝑁) ≤ 𝑂(𝑁2).
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Subtask 2 (𝟑𝟎 points). 𝑁 ≤ 100000
Two possible optimizations would solve the second subtask where 𝑁 may be up to 100000.
The first one is to use bitsets to “parallelize” the computation of DP. The easiest way to implement
this is by using the bitset class from the C++ standard library. If you want to implement it yourself,
it works like this: Encode the 64 bits of dp[𝑖][𝑤], … ,dp[𝑖][𝑤 + 63] in a single 64-bit integer. This has
to be done for 𝑤 that are multiples of 64 only. To calculate this integer, just take the bitwise or of
dp[𝑖][𝑤 − 𝑠𝑖], … ,dp[𝑖][𝑤 − 𝑠𝑖 + 63] and dp[𝑖][𝑤 + 𝑠𝑖], … ,dp[𝑖][𝑤 + 𝑠𝑖 + 63]. If 𝑠𝑖 itself is not a multiple of
64, each of these two integers has to be constructed by sticking two of the previously calculated
integers together. Although the asymptotic running time does not change, this speed-up with a factor
of 64 suffices to solve the second subtask. Internally, the bitsets of the C++ standard library are
implemented in a similar way and give the same speed-up factor.
Another optimization that solves this subtask is to de-duplicate the values in 𝑆. As long as a value 𝑠
occurs at least three times in 𝑆, replace these three with one occurrence of 𝑠 and one of 2𝑠. This way,
all four values −3𝑠, −𝑠, 𝑠, and 3𝑠, which can be constructed by summing the three occurrences of 𝑠
with arbitrary signs, can still be constructed by choosing appropriate signs for 𝑠 and 2𝑠. Therefore,
the replacement does not change anything in the result. However, it does change the asymptotic
running time to 𝑂(√𝑁 ⋅ 𝑁) because doing this optimization makes 𝑆 have size at most 𝑂(√𝑁): Even if
the elements of 𝑆 are as small as possible, these have to be 1, 1, 2, 2, 3, 3, … (because no number may
occur more than twice). By taking the Gaussian sum, this means that the sum of all elements in 𝑆 is at
least Ω(|𝑆|2). But since this sum is bounded by 𝑁, |𝑆| can not be larger than 𝑂(√𝑁).

Subtask 3 (𝟑𝟎 points). No further constraints.
The complete problem can be solved by combining the two mentioned optimizations. The asymptotic
running time changes to 𝑂(√𝑁 ⋅ 𝑁) by doing the second one, and the solution speeds up by a factor of
64 through the first one.
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