
BOI 2021
Lübeck, Germany (online only)

April 23–26, 2021

Day 2
Task: prison

Spoiler

The short shank; Redemption (prison)
by nils gustafsson, loke gustafsson, and gustav kalander (sweden)

Subtask 1. 𝑁 ≤ 500

For any 0 ≤ 𝑎 ≤ 𝑛 ≤ 𝑁, 0 ≤ 𝑑 ≤ 𝐷 let 𝑋𝑛,𝑑,𝑎 denote the minimum number of prisoners that will rebel at
time 𝑇 if we only consider the first 𝑛 prisoners and the wardens place at most 𝑑 mattresses, the last
of which is positioned immediately to the left of 𝑎 (if 𝑑 = 0, we ignore the value of 𝑎). In particular,
the solution to the original problem is just min1≤𝑎≤𝑁 𝑋𝑁,𝐷,𝑎.
We can compute all 𝑋𝑛,𝑑,𝑎 via dynamic programming as follows:

• Obviously, 𝑋0,𝑑,0 = 0 for all 𝑑.
• If 0 < 𝑚 < 𝑛, then 𝑋𝑛,𝑑,𝑚 is either 𝑋𝑛−1,𝑑,𝑚 or 𝑋𝑛−1,𝑑,𝑚+1; more precisely, the former case happens if
and only if prisoner 𝑛will not rebel for some hence any placement of themattresses such that the
last mattress is at position𝑚. This is in turn equivalent tomin{𝑡𝑚+𝑛−𝑚, 𝑡𝑚+1+𝑛−𝑚−1,… , 𝑡𝑛} > 𝑇.

• If 𝑚 = 𝑛 > 0 (i.e. there’s a mattress immediately to the left of prisoner 𝑛), then 𝑋𝑛,𝑑,𝑚 can be
computed as min𝑚≤𝑛−1 𝑋𝑛−1,𝑑−1,𝑚 or min𝑚≤𝑛−1 𝑋𝑛−1,𝑑−1,𝑚 + 1, depending on whether prisoner 𝑛 will
rebel at time 𝑇. This is in turn equivalent to 𝑡𝑛 ≤ 𝑇.

If we compute all these in order of increasing 𝑛 and decreasing 𝑚, we can update the minimum in the
second case in constant time for a total runtime of 𝑂(𝑁2𝐷).

Subtask 2. 𝑁 ≤ 500000, 𝐷 = 1

If we want to place just a single mattress, then we have enough time to check all possibilities provided
that we can compute the number of prisoners rebelling for a given placement in 𝑂(1) after some
precomputation.
For this, we consider prisoners to the left of our mattress and to the right separately. For the first
case, it suffices to just sweep through the prisoners once from left to right to compute for any 𝑛 ≤ 𝑁
how many of the first 𝑛 prisoners will rebel if we never place a mattress.
The computation for the prisoners on the right of the mattress is slightly more involved as moving the
mattress from left to right can affect basically any prisoner on the right. Instead, we sweep from right
to left and keep a stack of those prisoners that will not rebel. When the mattress moves one step to
the left, so that prisoner 𝑛 is now to the right of it, all prisoners 𝑛 + 1,… , 𝑛 + 𝑡𝑛 − 𝑇 will start to rebel
unless they already did so. We can therefore just pop elements from our stack until we see the first
prisoner to the right of this (and push 𝑛 when necessary), which has constant amortized time.

Subtask 3. 𝑁 ≤ 4000

This is another dynamic programming subtask, but we have to think backwards this time: instead of
computing 𝑋𝑛,𝑑,𝑚 as above, we define �̄�𝑛,𝑘,𝑚 as the minimal number of mattresses it takes to ensure
that at most 𝑘 of the first 𝑛 prisoners rebel and such that the rightmost mattress is placed somewhere
to the right of prisoner 𝑚. Of course, there are again 𝑂(𝑁3) DP states, but we can make the following
observation: 𝑋𝑛,𝑘,• is obviously increasing in 𝑚, and moreover 𝑋𝑛,𝑘,1 and 𝑋𝑛,𝑘,𝑚 differ by no more than
1; namely, take any placement of 𝑋𝑛,𝑘,1 mattresses such that only 𝑘 prisoners rebel and just add in an
unnecessary mattress on your favourite place to the right of 𝑚.

1/4



BOI 2021
Lübeck, Germany (online only)

April 23–26, 2021

Day 2
Task: prison

Spoiler

Thus, instead of computing �̄�𝑛,𝑘,𝑚 we can simply compute 𝑌𝑛,𝑘 ∶= 𝑋𝑛,𝑘,1 together with the rightmost
mattress 𝑍𝑛,𝑘 of any placement of 𝑌𝑛,𝑘 mattresses such that only 𝑘 prisoners rebel. To compute these,
we go through them in order of increasing 𝑛, making a case distinction whether we put a mattress
immediately to the left of 𝑛 and if not, whether prisoner 𝑛 will rebel or not. The total runtime is 𝑂(𝑁2).

Subtask 4. 𝑁 ≤ 75000, 𝐷 ≤ 15

This subtask can be solved in 𝑂(𝑁𝐷 log𝑁) by speeding up the solution to the very first subtask by
putting its entries into a segment tree and doing all the updates for 𝑛 ≤ 𝑚 − 1 at the same time when
we move from 𝑛 − 1 to 𝑛.
Alternatively, an inefficient implementation of the second half of the full solution sketched below
takes 𝑂(𝑁𝐷) time, which then of course also solves this subtask.

Subtask 5. 𝑁 ≤ 75000

For this subtask, one can further optimize the DP solution from the previous subtask to get an
𝑂(𝑁 log2 𝑁) solution. This requires one of several advanced, but standard techniques like Lagrange
multipliers (also referred to as the “Alien trick” because of its use in the sample solution to IOI 2016’s
task Aliens) or using divide and conquer. However, we think that the full solution is actually easier
than this.

Subtask 6. No further constraints.

To describe the full solution, let us call a prisoner 𝑛 passive when they would not rebel if the wardens
placed a mattress immediately to their left (i.e. 𝑡𝑛 > 𝑇) but they would do so if the wardens didn’t
place any mattress.
If we have any optimal solution, we can move any mattress not to the left of an passive prisoner to
the right until we hit a passive prisoner without changing the number of rebels: namely, if we move
the mattress past a non-passive prisoner 𝑛, this does not affect their own state at time 𝑇 by definition,
and for any prisoner to the right of 𝑛 the time where he will start rebelling can only increase.
Thus, we can restrict to placements of (at most) 𝐷 mattresses where all mattresses are immediately to
the left of passive prisoners. Moreover, putting up mattresses will only ever affect the state at time
𝑇 of passive prisoners, so we simply want to maximize the number of passive prisoners that do not
rebel at time 𝑇.
The crucial insight then is the following: we obtain a rooted forest with nodes the passive prisoners
by declaring the parent of an inactive prisoner 𝑛 to be the next passive prisoner 𝜋(𝑛) to the right of 𝑛
such that 𝜋(𝑛) would not rebel if the wardens put a mattress just to the left of 𝑛 (if they exist), and we
can easily describe the effect of putting up a mattress graph-theoretically:

Lemma 1. Putting a mattress immediately to the left of a passive prisoner 𝑛 results in prisoners on
the unique path from 𝑛 to the root of its component (i.e. prisoners 𝑛, 𝜋(𝑛), 𝜋(𝜋(𝑛)), … ) not rebelling at
time 𝑇, and does not affect the state at time 𝑇 of any other prisoner.

Proof. Obviously, putting up a mattress to the left of 𝑛 does not affect the behaviour of prisoners to
the left of 𝑛. By definition, neither 𝑛 nor 𝜋(𝑛) will rebel at time 𝑇 if we put a mattress immediately to

2/4



BOI 2021
Lübeck, Germany (online only)

April 23–26, 2021

Day 2
Task: prison

Spoiler

the left of 𝑛, while the state of no prisoner strictly between 𝑛 and 𝜋(𝑛) is affected by this. The same
argument shows that if 𝜋(𝑛) is undefined, the state of no prisoner to the right of 𝑛 is affected.
Now consider a passive prisoner 𝑚 to the right of 𝜋(𝑛). We claim that 𝑚 will not rebel at time 𝑇 when
placing a mattress immediately to the left of 𝑛 if and only if they would not rebel when placing a
mattress immediately to the left of 𝜋(𝑛). Indeed, the implication ‘⇒’ is always true for trivial reasons.
For ‘⇐’ observe that if a passive prisoner to the right of 𝜋(𝑛) would rebel at time 𝑇 when putting up a
mattress immediately to the left of 𝑛 but not when placing one immediately to the left of 𝑛, then the
incentive would have had to come from some prisoner between 𝑛 and 𝜋(𝑛) which would have lead to
𝜋(𝑛) rebelling at time 𝑇, contradicting the definition of 𝜋.
Thus, the lemma follows by inductively applying the above argument to 𝑛, 𝜋(𝑛), 𝜋2(𝑛), …

Thus we are left with the following problem: given a forest, select at most 𝐷 nodes such that the union
of the paths to their corresponding roots is as large as possible. In order to efficiently solve this, we
now observe:

Lemma 2. Assume 𝐷 > 0 and let 𝑣 be any node of maximum depth. Then there exists an optimal
solution containing 𝑣.

Proof. Fix any optimal solution. We start at 𝑣 and we go upwards until we for the first time hit a node
𝑚 that lies on a path from some node 𝑤 of our solution to the root. We claim that replacing 𝑤 by 𝑣
produces a solution not worse than the original one (hence again optimal).
Indeed, this can only remove the nodes between 𝑤 (inclusive) and𝑚 (exclusive) from the union of our
paths, while definitely adding in all nodes between 𝑣 (inclusive) and 𝑚 (exclusive); note that none of
the latter were part of the original union by choice of 𝑚. The claim follows as 𝑣 is of maximum depth,
so that there at most as many nodes between 𝑤 and 𝑚 than there are between 𝑣 and 𝑚.

So what should we do after picking the first node 𝑣? Well, if we have any set 𝑆 of nodes containing
𝑣, then trimming the path from a node 𝑤 ∈ 𝑆 − {𝑣} to its root so that it already stops the first time
it hits the path from 𝑤 to its root, does not affect the union of the paths. Thus, (optimal) solutions
with at most 𝐷 nodes and containing 𝑣 are in 1 ∶ 1 correspondence with (optimal) solutions with 𝐷 − 1
nodes in the forest obtained by removing the path from 𝑣 to its root. Applying the previous lemma
inductively we therefore see that we can construct an optimal solution by iteratively choosing a node
of a maximum depth and removing all nodes on the path to the root (inclusive).
It remains to demonstrate how we can (1) efficiently compute 𝜋 and (2) efficiently perform the above
greedy procedure.
First note that the naïve way to construct 𝜋 is quadratic (or worse), which is too slow and would
only solve Subtask 3 again. Instead, we sweep through the prisoners from left to right, keeping a
stack of all passive prisoners 𝑛 whose 𝜋(𝑛) we have not yet encountered. Whenever we encounter a
new passive prisoner 𝑚, the prisoners 𝑛 on the stack with 𝜋(𝑛) = 𝑚 will form a contiguous (possibly
empty) sequence starting on the top. This is because a prisoner still on the stack will have 𝜋(𝑛) > 𝑚
(i.e. putting a mattress to the left of them will not prevent 𝑚 from rebelling at time 𝑇) if and only if
there is some prisoner 𝑘 to the right of them (including themselves) with 𝑘 + 𝑇 − 𝑡𝑘 ≥ 𝑚.
Thus, we can find all 𝑛 with 𝜋(𝑛) = 𝑚 in constant amortized time by popping elements from our stack
until we encounter a prisoner 𝑘 with 𝑘 + 𝑇 − 𝑡𝑘 ≥ 𝑚, yielding a linear time implementation of the
first part. Alternatively, this part can be implemented with a segment tree together with a stack in
𝑂(𝑁 log𝑁) time which should still be fast enough.

3/4



BOI 2021
Lübeck, Germany (online only)

April 23–26, 2021

Day 2
Task: prison

Spoiler

For the second part, the naïve implementation takes time 𝑂(𝑁𝐷) which suffices for Subtask 4. For a
more clever implementation, we keep a priority queue 𝑄 of all roots sorted by the height of their
component and we keep for each node a pointer to a child with maximum subtree height. Then, when
we extract a node from 𝑄 (which we do at most 𝐷 times), we use these pointers to traverse the path
we are actually removing from our forest and delete all these nodes. Afterwards, we push all their
children into the queue (as they become new roots). Since we do at most 𝑁 pushes and traverse each
node at most once, the total runtime is 𝑂(𝑁 log𝑁).
In fact, one can also implement this step in linear time as well by implementing 𝑄 using an array of
vectors (indexed by subtree height) and putting all nodes in there right at the beginning (which does
not hurt since any non-root will come after their parent anyhow). Instead of actually removing a node
from the queue, we mark it as deleted in a second array and just ignore it when we extract it. Since
this only requires us to traverse the forest and the queue once, the total runtime is indeed 𝑂(𝑁).

4/4


