
BOI 2021
Lübeck, Germany (online only)

April 23–26, 2021

Day 1
Task: servers

Spoiler

Inside information (servers)
by jakub radoszewski (poland)

Subtask 1. 𝑁 ≤ 4000

This subtask can be solved by a brute force.

Subtask 2. Server 1 is directly connected to servers 2, 3, … , 𝑁.

Let 𝑡𝑖 be the first point of time when servers 1 and 𝑖 were connected. We set 𝑡1 = 0. To check whether
server 𝑎 stores data chunk 𝑑 at time 𝑖, you have to check that 𝑡𝑑 < 𝑡𝑎 < 𝑖 holds. To count the number
of servers that store data chunk 𝑑 at time 𝑖, you have consider the following two cases:
𝑑 = 1 In this case the answer is simply 1 + the number of Share operations which happened so far
𝑑 ≠ 1 In this case the answer is 2 + the number of Share operations which happened after 𝑡𝑑 or 1 if

𝑖 < 𝑡𝑑

Subtask 3. Servers 𝐴 and 𝐵 are directly connected to each other if and only if |𝐴 − 𝐵| = 1.

In the solution, we refer to servers as nodes and to connections as edges. Let the label of an edge
𝑠1𝑠2 be the moment of time when a Share operation is called for this edge - a value in 1,⋯ , 𝑁 − 1. The
label of an edge for which no Share operation was called yet is undefined. The solution is based on
the following key observation: Node 𝑠 has a chunk of data 𝑑 if and only if the sequence of labels of
edges on the path from node 𝑑 to node 𝑠 is increasing.
Let us proceed to subtask 3. To each maximal path of edges with increasing or decreasing labels,
we will assign a different colour. We define an i-label / d-label of a node as a pair consisting of the
colour of a maximal increasing/decreasing path containing this node and the distance from this node
to the beginning of this path. A node can have between 0 and 2 i-labels and d-labels. As an example,
if N=7, the nodes are numbered 1..7 and the labels of subsequent edges are 4, 1, 3, 2, -, 5, where ’-’
means undefined, then the maximal increasing paths are 4 (colour A), 13 (B), 2 (C), 5 (D), the maximal
decreasing paths are 41 (E), 32 (F), 5 (G). Node 3 has an i-label B1 and d-labels E2 and F0. The colours
of max paths are completely arbitrary, they just need to be different.
If 𝑠1 and 𝑠2 Share all their data, only the i/d-labels of nodes 𝑠1, 𝑠2 change. They can be easily updated
based on the i/d-labels of their neighbours. For a Query it is enough to compare the i/d-labels of
nodes 𝑠 and 𝑑. To Count the number of nodes that store data chunk 𝑑 it suffices to inspect the lengths
of maximal increasing/decreasing paths on which node 𝑑 is located and its i/d-labels. Thus each
operation works in 𝑂(1) time.
This approach leads to a solution that can answer all Queries in 𝑂(log𝑁)-time using heavy-light
decomposition. Each such query can be answered by decomposing the path from 𝑠 to 𝑑 via their LCA
into 𝑂(log𝑁) fragments of heavy paths. For each heavy path, a data structure from subtask 3 is stored.
(Here i/d-labels do not need to store the distance of the node.)

Subtask 4. Servers 𝐴 and 𝐵, with 𝐴 < 𝐵, are directly connected to each other if and only if
2𝐴 = 𝐵 or 2𝐴 + 1 = 𝐵.

For each node 𝑣, let 𝑇𝑣 be its subtree. For each edge 𝑒 outgoing from 𝑣 we will store, as 𝐶(𝑒), the
number of nodes from 𝑇𝑣 that can be reached through a path with increasing edge labels starting

1/2

BOI 2021
Lübeck, Germany (online only)

April 23–26, 2021

Day 1
Task: servers

Spoiler

from edge 𝑒.
To Count the number of nodes that store data chunk 𝑑, we consider each of the 𝑂(log𝑁) parents of 𝑑.
For each such parent 𝑣, with a Q d v query we check if the path from 𝑑 to v is increasing. If so, we
compute the number of nodes on increasing paths going from 𝑑 via 𝑣 based on the label of edge used
to enter node 𝑣. The complexity used per parent is 𝑂(log𝑁) (one Query), which gives 𝑂(log2 𝑁) time in
total. Similarly, a data query can be used to update 𝐶(𝑒) upon a Share operation. Since there are only
2 outgoing edges this part also works in 𝑂(log2 𝑁).

Subtask 5. Any server is directly connected to at most 5 other servers.

In this case, we make use of a centroid decomposition. For each node 𝑣, let 𝑇𝑣 be the subtree from
the decomposition whose centroid is 𝑣. Since the maximal degree is very small you can apply the
same solution as in the previous subtask.

Subtask 6. No further constraints.

In the general case, we will store for every node 𝑣 a static segment tree ST(𝑣) allowing us to compute
suffix sums of values 𝐶(𝑒), stored according to increasing labels of edges 𝑒.

2/2

