
BOI 2021
Lübeck, Germany (online only)

April 23–26, 2021

Day 2
Task: swaps

Spoiler

The Collection Game (swaps)
by antti röyskö (finland)

Let 𝐴1, … , 𝐴𝑁 be such that room 𝑖 has the 𝐴𝑖-th most aesthetic art collection. Note that computing
𝐴1, … , 𝐴𝑁 suffices to solve the task because answer should just output all rooms ordered according to
increasing 𝐴𝑖. In this reformulation, a call to schedule(𝑖, 𝑗) will then return whether 𝐴𝑖 < 𝐴𝑗, potentially
swapping 𝐴𝑖 and 𝐴𝑗 beforehand. So, we seek to determine 𝐴1, … , 𝐴𝑁 after our last call to visit.

Subtask 1. 𝑉 = 5 000 and the museum never swaps art collections.

Because the 𝐴𝑖 will never get swapped in the first two subtasks, a call to schedule(𝑖, 𝑗) will determine
whether 𝐴𝑖 < 𝐴𝑗 after the last call to visit, and so whether room 𝑖 should appear before room 𝑗 in the
output. Therefore, we only have to sort all rooms using our calls to schedule and visit.
For Subtask 1, a solution calling schedule and directly afterwards visit every time can in total call
these functions 𝑁⌈log𝑁⌉ times without exceeding 𝑉 visits. So, we can use any sorting algorithm which
needs only that many comparisons to sort all the rooms.
Note that sort in C++ will not suffice for this purpose. However, we can insert the rooms one-by-one
into a vector using binary search, for example with lower_bound. Also, a custom implementation
of, for example, merge sort will work.

Subtask 2. 𝑉 ≥ 1 000 and the museum never swaps art collections.

One option here is to use that fact that merge sort splits the list to be sorted into two equal halves
which can then be sorted independently before merging them to obtain a sorting of the whole list.
Since these sublists can be sorted independently and because we can compare disjoint pairs of indices
at the same time, we can sort the two halves simultaneously. On the highest level, we will then need
𝑁 − 1 comparisons to merge the lists, on the second level we will need ⌈𝑁/2⌉ − 1 comparisons for the
merging, then we will need ⌈𝑁/4⌉ − 1 comparisons and so on until 1 comparison on the lowest level.
In total, this gives (𝑁 − 1) + (⌈𝑁/2⌉ − 1) + (⌈𝑁/4⌉ − 1) + ⋯ + 1 ≤ 𝑁 + 𝑁/2 + 𝑁/4 + ⋯ + 1 ≤ 2𝑁 comparisons,
solving Subtask 2.
There is also another solution which just compares all pairs of rooms. This can be done in parallel using
a total of 2𝑁 calls to visit, and it is easy to reconstruct the order all rooms from these comparisons,
for example by a topological sort. This also solves Subtask 2.

Subtask 3. 𝑁 ≤ 100, 𝑉 = 5 000

In this subtask, we can iteratively single out the smallest element 𝐴𝑗 and recurse on the remaining
elements.* To do so, we iterate 𝑖 = 1, … , 𝑁 and keep the index 𝑗 of the currently smallest element 𝐴𝑗
among 𝐴1, … , 𝐴𝑖. For 𝑖 = 1, this is simply 𝑗 = 1. Then, when moving from 𝑖 to 𝑖 + 1, we compare the
elements at indices 𝑗 and 𝑖 +1 (calling schedule and visit each once), and set 𝑗 to the smaller of the two
elements. Note that even if 𝐴𝑗 and 𝐴𝑖+1 are swapped beforehand, this will yield the smallest element
among 𝐴1, … , 𝐴𝑖+1.

* Also called “selection sort.”

1/3



BOI 2021
Lübeck, Germany (online only)

April 23–26, 2021

Day 2
Task: swaps

Spoiler

This approach needs 𝑁 − 1 calls to visit to determine the smallest element of the list and afterwards
reduces 𝑁 by one. So, the total number of call to visit will be (𝑁 − 1) + (𝑁 − 2) +⋯ +1 = 𝑁(𝑁 − 1)/2 ≤ 𝑁2/2
which suffices for Subtask 3.

Subtask 4. 𝑉 = 5 000

In fact, it is possible to determine the smallest element of the list using only ⌈log𝑁⌉many calls to visit.
One way to do so is by creating a single-elimination tournament amongst the elements with ⌈log𝑁⌉
many rounds.† That is, with one call to visit (and 𝑁/2 calls to schedule) we determine the smaller
element of 𝐴1 and 𝐴2, of 𝐴3 and 𝐴4, of 𝐴5 and 𝐴6, and so on. Afterwards, there will only remain ⌈𝑁/2⌉
many elements on which we can repeat this procedure until we are with left with only the smallest
element of the whole list.
By proceeding as above on the remaining 𝑁 − 1 elements, we can solve the problem using at most
𝑁⌈log𝑁⌉ calls to visit, solving Subtask 4.

Subtask 5. 𝑉 ≥ 500

Essentially, the two previous subtasks used selection sort and heap sort. What other sorting algorithm
is there?
Well, there is bubble sort, but that needs 𝑁2 many bubble steps. However, note that we can parallelize
those bubble steps. Namely, in a single phase we could bubble the elements 𝐴1 and 𝐴2, the elements
𝐴3 and 𝐴4, and so on simultaneously. The same applies to 𝐴2 and 𝐴3, 𝐴4 and 𝐴5, and so on. By
alternating between these two phases, this would eventually sort the list.‡

Two problems remain. First, how many phases does this process need? It turns out that it needs only
𝑁 phases§, as can be proven by a submission during the contest. Therefore, this would suffice for
Subtask 5.
However, we still have to implement these phase using the functions schedule and visit. If schedule(𝑖, 𝑗)
always puts the smaller element of 𝐴𝑖 and 𝐴𝑗 into 𝐴𝑖, this works out of the box, earning 60% of the
points for this subtask.
If not, we can use the following observation: Any solution relying on the fact that the smaller element
gets moved into 𝐴𝑖 for every call to schedule(𝑖, 𝑗) can actually be adapted to a full solution as follows.
If visit returns that the smaller element is in 𝐴𝑗, we simply exchange the indices 𝑖 and 𝑗 in every query
from now on, and so we may assume that the smaller element will be 𝐴𝑖 after a call to schedule. Note
that many implementations of the above idea will do this implicitly anyway.

Subtask 6. 𝑉 ≥ 100

From this subtask on, it gets considerable harder to solve the problem. It turns out that the special
case where the smaller element is always moved into 𝐴𝑖 for each call to schedule(𝑖, 𝑗) is the problem
of designing sorting networks, and as we know from the previous subtask, this special case suffices to
solve the problem completely.

† Also called “heap.”
‡ Also called “odd-even sort.”
§ See Wikipedia.

2/3

https://en.wikipedia.org/wiki/Sorting_network
https://en.wikipedia.org/wiki/Odd-even_sort


BOI 2021
Lübeck, Germany (online only)

April 23–26, 2021

Day 2
Task: swaps

Spoiler

In Subtask 6, any sorting network of depth ≤ ⌈log𝑁⌉(⌈log𝑁⌉ + 1) will suffice to solve the problem. Here,
it is possible to come up with your own solutions of a sorting network of such a depth, but which does
not quite solve the next subtask.
For example, we can go for a merge sort style approach which first sorts the two halves of the list
recursively and then merges them. To do this merging, we can iterate over a gap size 𝑔 = 2𝑘, 2𝑘−1, … , 1
where 𝑘 is the maximal value satisfying 2𝑘 ≤ 𝑁 and bubble each element 𝐴𝑖 with 𝐴𝑖+𝑔 (using two calls
to visit). It can be proven that this sorting network correctly sorts any list.¶

Subtask 7. 𝑉 ≥ 50

For the last subtask, we need a sorting network of depth ≤ ⌈log𝑁⌉(⌈log𝑁⌉+1)/2 to obtain all the points.
Some standard sorting networks will work for that, for example bitonic mergesort, Batcher’s odd-even
mergesort or the pairwise sorting network. But it is also possible to come up with your own solutions.

¶ Using the zero-one principle from Wikipedia.

3/3

https://en.wikipedia.org/wiki/Bitonic_sorter
https://en.wikipedia.org/wiki/Batcher_odd-even_mergesort
https://en.wikipedia.org/wiki/Batcher_odd-even_mergesort
https://en.wikipedia.org/wiki/Pairwise_sorting_network
https://en.wikipedia.org/wiki/Sorting_network

