
BOI 2021
Lübeck, Germany (online only)

April 23–26, 2021

Day 1
Task: watchmen

Spoiler

From Hacks to Snitches (watchmen)
by tobias lenz and lukas michel (germany)

Let 𝐿 = ℓ1 +⋯+ ℓ𝐾. If 𝑢 is a corner on a watchman route, let ℓ𝑢 be the length of that route. Whenever we
speak of reaching some corner or moving through the museum, we implicitely imply that you should
not be noticed during these actions.

Subtask 1. 𝑁,𝑀 ≤ 100000, 𝐾 = 1, ℓ1 ≤ 125

Create a directed graph whose vertices are pairs (𝑢, 𝑣𝑖) where 𝑢 is your current position and 𝑣𝑖 is the
current position of the watchman. Then, for a corridor from 𝑢 to 𝑤, add an edge from (𝑢, 𝑣𝑖) to (𝑤, 𝑣𝑖+1).
Also, add an edge from (𝑢, 𝑣𝑖) to (𝑢, 𝑣𝑖+1). Finally, delete all vertices where you and the watchman are
at the same position as well as all edges where you and the watchman pass each other in a corridor.
This directed graph represents all possible movements of you and the watchman during which you
are not noticed. Hence, we want to compute the shortest path in this graph from (1, 𝑣1) to a vertex of
the form (𝑁, 𝑣𝑖). This can be done by a BFS. The complexity of this approach is 𝑂(𝑀ℓ1) which suffices
to solve Subtask 1. Note that the directed graph from this approach should not be constructed
explicitely, instead, its edges should only be constructed on demand.

Subtask 2. 𝑁,𝑀 ≤ 100000, ℓ1 + ⋯ + ℓ𝐾 ≤ 125 and no corridor connects the routes of two
distinct watchmen.

Let 𝑡𝑢 be the earliest time at which you can reach a corner 𝑢 without getting noticed. Note that you
might want to visit corner 𝑢 also at a later point in time than 𝑡𝑢. This is because you can sometimes
get a shorter path to your target by first letting the watchman pass corner 𝑢 and then moving to 𝑢 as
soon as possible thereafter. See the following example for 𝑢 = 2.

1

2

3

4
5

6
7

However, it turns out that if no corridor connects the routes of two distinct watchmen, you never
need to visit corner 𝑢 after time 𝑡𝑢 + 𝐿 because of the following observation:

Lemma. Under the above conditions, 𝑡𝑁 ≤ 𝑁 + dist(1, 𝑁) where dist denotes the distance in the same
graph, but without any watchmen.

Proof. Consider any shortest path 𝑃 from 1 to 𝑁 in the graph without watchmen. We now iteratively
build a safe route from 𝑃 as follows: pick any watchman route and consider the first and last time

1/6



BOI 2021
Lübeck, Germany (online only)

April 23–26, 2021

Day 1
Task: watchmen

Spoiler

our current route 𝑃 hits it. We then replace the actions inbetween as follows: should we run into the
watchman the first time we enter his route, we first wait 1min (note that this is possible because of
our assumption that no corridor connect corners on distinct watchmen routes, and only because of
it!), otherwise we immediately step onto the watchman route. In both cases, we then simply follow
the watchman route (in the usual direction) until we reach the last node of 𝑃 that is also on our
watchman route. Note that this way we will never be noticed by this specific watchman.
We repeat this process for any other watchman route. As no two watchman routes intersect, it is
guaranteed that after any iteration, none of the watchmen considered so far will ever notice us. Thus,
this process yields a safe route in the end. Moreover, if the watchman route we consider in a given
iteration has length ℓ, then the newly added segment on the route has length at most ℓ − 1 and we
wait at most 1 minute. As we consider each watchman route only once, we need at most 𝐿 additional
minutes in total as desired.

Hence, we can make a BFS which visits each corner at every possible time step, but only as long as the
time is still less than 𝑡𝑢 + 𝐿 (this BFS will implicitely compute 𝑡𝑢 as the first time it ever reaches corner
𝑢). The complexity of this approach is 𝑂(𝑀𝐿) because we will consider each corner and therefore also
each corridor at most 𝐿 times, solving Subtask 2.

Subtask 3. ℓ𝑖 ≤ 200, ℓ1 + ⋯ + ℓ𝐾 ≤ 350 and no corridor connects the routes of two distinct
watchmen.

Note that for any corner 𝑢 which is not part of any watchman route, it suffices to know 𝑡𝑢 to know
all the times during which you can be at corner 𝑢. This is because you can simply stay at corner 𝑢
forever after time 𝑡𝑢 since no watchman ever passes this corner. Therefore, our BFS should visit such
a corner 𝑢 at most once, and therefore it can also consider any corridor from some other corner 𝑤 to
𝑢 in that direction at most once.
For a corridor in the opposite direction from 𝑢 to some other corner 𝑤, we know that if can reach 𝑢 at
time 𝑡𝑢, we will be able to reach 𝑤 at all the times 𝑡𝑢 + 1, 𝑡𝑢 + 2,… except for those times at which 𝑤 is
occupied by a watchman. There are multiple ways to handle this efficiently so that we also need to
consider the corridor in the direction from 𝑢 to 𝑤 at most once. For example, during our BFS, we can
keep a separate list of all those corners on watchman routes which can be reached at all times from
the current time step on. Once the BFS visits corner 𝑢, we can then add 𝑤 to this list. During any BFS
step, we look whether there are any corners on this list, and if so, add them to the BFS queue for the
current time step. Finally, we can remove any corner 𝑤 from the list after time 𝑡𝑤 + 𝐿.
So, all corridors incident to some corner not part of any watchman route and such corners themselves
need to be considered at most once by this modified BFS. Consequently, there remain at most 𝑂(𝐿2)
corridors between corners which both lie on watchman routes that have to be considered multiple
times, and those corridors will be considered at most 𝐿 times since any corner is visited at most 𝐿
times. In total, the complexity of this approach is therefore 𝑂(𝑀 + 𝐿3), solving Subtask 3.

Subtask 4. No corridor connects the routes of two distinct watchmen.

Let’s consider those segments of a path which use corridors belonging to some watchman route
separately from those that do not. For this purpose, we will compute (additional to 𝑡𝑢) the earliest
time 𝑠𝑢 at which you can reach a corner 𝑢 without being noticed via a path whose last corridor
does not belong to any watchman route. Then, we will run Dijkstra on 𝑡𝑢 and 𝑠𝑢 simultaneously and

2/6



BOI 2021
Lübeck, Germany (online only)

April 23–26, 2021

Day 1
Task: watchmen

Spoiler

update segments of corridors belonging to watchman routes at once while we will update segments
of corridors not belonging to watchman routes only corridor-by-corridor.
Assume the Dijkstra has just computed 𝑡𝑢, so we want to update the neighbours of 𝑢 based on this
value. Consider a single corridor not belonging to any watchman route from 𝑢 to some other corner 𝑤
which we want to update. Then, if there is no watchman at time 𝑡𝑢 + 1 at 𝑤, you can reach 𝑤 at time
𝑡𝑢 + 1 and your last used corridor will not belong to any watchman route. Hence, in that case we have
to update 𝑡𝑤 = min(𝑡𝑤, 𝑡𝑢 + 1) and 𝑠𝑤 = min(𝑠𝑤, 𝑡𝑢 + 1). On the other hand, if there is a watchman at
time 𝑡𝑢 + 1 at 𝑤, we can simply wait one time step at 𝑢 and then move to 𝑤 afterwards. We can do this
because the constraints of this subtask guarantee that there are never two watchman at neighbouring
corners, and so there cannot be a watchman at corner 𝑢 at time 𝑡𝑢 + 1. Hence, we reach 𝑤 at time
𝑡𝑢 + 2, and can update 𝑡𝑤 and 𝑠𝑤 accordingly.
Otherwise, if the Dijkstra has computed 𝑠𝑢, we want to use 𝑠𝑢 update the values 𝑡𝑤 at once for all
corners 𝑤 reachable from 𝑢 via segments of corridors belonging to watchman routes. First, note
that this only applies if 𝑢 lies on a watchman route because otherwise there do not exist any such
segments starting from 𝑢, and for the same reason corner 𝑤 should be on the same watchman route
as 𝑢. Consequently, we only have to consider the case 𝑢 = 𝑣𝑖 and 𝑤 = 𝑣𝑗 for the vertices 𝑣1, … , 𝑣ℓ𝑢
of the watchman route of 𝑢, and we want to find the shortest possible path from 𝑣𝑖 to 𝑣𝑗 using only
corridors from that route. This is just a matter of case distinctions:

• Either we directly move to 𝑤 along the route of the watchman in his direction.
• Or we directly move to 𝑤 in the opposite direction along the watchman route.
• And finally, we can first let the watchman pass corner 𝑢 and then move to 𝑤 in that opposite
direction. Note that it is actually possible to let the watchman pass corner 𝑢 because your last
used corridor before arriving at 𝑢 at time 𝑠𝑢 did not belong to any watchman route. Hence,
while the watchman is at corner 𝑢, we can avoid him by temporarily moving back along that
corridor.

For all of these three cases, we can compute in constant time whether the corresponding movement
is possible without getting noticed and then update 𝑡𝑤 accordingly. We will not update 𝑠𝑤 because
after these movements the last used corridor will belong to a watchman route.
Note that the collection of all updates from 𝑡𝑢 will run in time 𝑂(𝑀). On the other hand, at most 𝐿
corners 𝑢 lie on watchman routes, and for each of them we have to update 𝑡𝑤 from 𝑠𝑢 for at most 𝐿
further corners 𝑤 on the same watchman route of 𝑢 with all of these updates taking constant time.
The total runtime is therefore 𝑂((𝑀 + 𝐿2) log(𝑀 + 𝐿2)) with the logarithm coming from the Dijkstra.

Subtask 5. ℓ1 + ⋯ + ℓ𝐾 ≤ 125

Assume that 𝑢 is a corner on a watchmen route of length ℓ𝑢. From this subtask on, the crucial
observation is the following: If you can reach corner 𝑢 at time 𝑡, you can also reach corner 𝑢 at time
𝑡 + ℓ𝑢. This is because if you are at corner 𝑢 at time 𝑡, you can simply run away from the watchman
(frantically screaming)* on his very own route. This will bring you back to corner 𝑢 in ℓ𝑢 steps without
ever crossing the steps of any watchman.
For such corners, we therefore only need to compute, for any 0 ≤ 𝑠 < ℓ𝑢, the earliest time 𝑡

𝑠
𝑢 at which

you can reach corner 𝑢 such that 𝑡𝑠𝑢 ≡ 𝑠 mod ℓ𝑢, i.e. the earliest time which has remainder 𝑠 after
division by ℓ𝑢, as this suffices to know all the times at which you can be at 𝑢. For any other corner 𝑢

* Depending on your perspective, you might also be following the watchman (still frantically screaming).

3/6



BOI 2021
Lübeck, Germany (online only)

April 23–26, 2021

Day 1
Task: watchmen

Spoiler

not on watchman routes, we only compute the earliest time 𝑡𝑢 to reach that corner since we will then
be able to stay there forever.
To compute these values, we use Dijkstra. If we know the value 𝑡𝑢 for a corner 𝑢 not on watchman
routes, we update all adjacent corners 𝑤 as follows:

• If 𝑤 is not on watchman routes, update 𝑤 with time 𝑡𝑢 + 1.
• If 𝑤 is on a watchman route, we also update 𝑤 with time 𝑡𝑢 + 1, but only if there no watchman
occupies 𝑤 at that time. Moreover, if 𝑇 is the next time at which a watchman occupies 𝑤, we will
also update 𝑤 with the time 𝑇 + 1. We need to do this because we can only stay at 𝑤 until time
𝑇 − 1, and so if we would only update 𝑤 with time 𝑡𝑢 + 1, we would miss the residue classes 𝑡

𝑠
𝑤

for those 𝑠 coming directly after time 𝑇.
Conversely, if we know 𝑡𝑠𝑢 for a corner 𝑢 on some watchman route, we update the adjacent corners 𝑤
as follows:

• If 𝑡𝑠𝑢 is the first time we ever visit corner 𝑢, we update all adjacent corner 𝑤 not on watchman
routes with time 𝑡𝑠𝑢 + 1.

• We will always update all adjacent corners 𝑤 belonging to a watchman route. We want to update
them with the times 𝑡𝑠𝑢 + 1, 𝑡

𝑠
𝑢 + 1 + ℓ𝑢, 𝑡

𝑠
𝑢 + 1 + 2ℓ𝑢, 𝑡

𝑠
𝑢 + 1 + 3ℓ𝑢, and so on. However, note that after

at most ℓ𝑤 number of steps, these times will fall again into the same residue class as one of the
earlier times. So, we have to update 𝑤 only with the times 𝑡𝑠𝑢 + 1, 𝑡

𝑠
𝑢 + 1 + ℓ𝑢, … , 𝑡

𝑠
𝑢 + 1 + (ℓ𝑤 − 1)ℓ𝑢.

• Finally, we will update 𝑢 with time 𝑡𝑠𝑢 + 1 because we can stay at corner 𝑢.
Note any corridor incident to some corner not part of any watchman route and such corners themselves
will be considered at most once by this algorithm. Moreover, the algorithm will consider each of the
𝑂(𝐿2) corridors between corners which both lie on watchman routes at most ℓ𝑢 times, and every time it
will update𝑤with at most ℓ𝑤 values. Therefore, the complexity of this approach is𝑂((𝑀+𝐿

4) log(𝑀+𝐿4)),
solving Subtask 5.

Subtask 6. ℓ𝑖 ≤ 200, ℓ1 + ⋯ + ℓ𝐾 ≤ 350

Note that the solution from the previous subtask is somewhat inefficient for a corridor from 𝑢 to 𝑤
where 𝑢 and 𝑤 are both corners on some watchman route. Namely, for such a corridor we will update
𝑤 in total with ℓ𝑢ℓ𝑤 values even though there are only ℓ𝑤 many residue classes at corner 𝑤 which
need to be updated.

Instead, for the corner 𝑢, we can compute for all watchmen routes 𝑖 the earliest time 𝑡𝑖,𝑠𝑢 at which we
can reach 𝑢 such that 𝑡𝑖,𝑠𝑢 ≡ 𝑠 mod ℓ𝑖. Then, once we have computed 𝑡

𝑖,𝑠
𝑢 for the 𝑖 satisfying ℓ𝑖 = ℓ𝑤, we

can update 𝑤 with the value 𝑡𝑖,𝑠𝑢 + 1. So, we need to consider the corridor from 𝑢 to 𝑤 only ℓ𝑤 times,
reducing total runtime for corridors between corners which both lie on watchman routes to 𝑂(𝐿3).

However, it still remains to compute the times 𝑡𝑖,𝑠𝑢 . For that, we can actually use the values 𝑡𝑠𝑢 which
are computed by our Dijkstra anyway. Once we know 𝑡𝑠𝑢, we can iterate through all 𝑖 and update the

values 𝑡𝑖,𝑠
′

𝑢 with the times 𝑡𝑠𝑢, 𝑡
𝑠
𝑢 + ℓ𝑢, … , 𝑡

𝑠
𝑢 + (ℓ𝑖 − 1)ℓ𝑢. In total, this amounts to ℓ1 + ⋯ + ℓ𝐾 = 𝐿 update

steps for a single value 𝑡𝑠𝑢. Because there are at most 𝐿 corners on watchman routes, each of which
has at most 𝐿 residue classes, all these updates together take time 𝑂(𝐿3).
Consequently, the complexity of the entire algorithm is then 𝑂((𝑀 + 𝐿3) log(𝑀 + 𝐿3)), solving Subtask 6.

4/6



BOI 2021
Lübeck, Germany (online only)

April 23–26, 2021

Day 1
Task: watchmen

Spoiler

Subtask 7. No further constraints.

The crucial observation for the last subtask is the following: If we visit a corner 𝑢 on a watchman
route at time 𝑡𝑠𝑢 and consider a corridor from 𝑢 to another corner 𝑤 which is also on a watchman
route, we can actually perform all updates for 𝑤 in constant time. This works as follows. First, let 𝑇 be
the next time at which 𝑤 is occupied by a watchman. Then, if there is no watchman at 𝑢 at time 𝑇,
we know the optimal times to visit 𝑤 from 𝑢 for any residue class of 𝑤 at once: namely, we can just
go from 𝑢 to 𝑤 now, wait there until 𝑇 − 1, go back to 𝑢 (which is safe by assumption), and then to 𝑤
again, where we wait until time 𝑡𝑠𝑢 + ℓ𝑤. You can easily check that even if you visit 𝑢 again at some
later point in time, you will never be able to get to any residue class of 𝑤 earlier than via this path.
Thus, using a similar update as from a node without watchman to 𝑤, we can handle all these updates
in one step. Even better, we can then also remove this corridor from the graph completely.
Otherwise, if there is a watchman at time 𝑇 at corner 𝑢, let 𝑡 be the earliest time after 𝑇 at wich we
can again be at corner 𝑢 with residue class 𝑠. Then, we update 𝑤 with the times 𝑡𝑠𝑢 + 1 and 𝑡 + 1, and
consider the next time 𝑇′ at which 𝑤 is occupied by a watchman after time 𝑡. If there is no watchman
at 𝑢 at time 𝑇′, we already know how to update 𝑤 in constant time. If there is watchman at 𝑢 at time
𝑇′, then it turns out that we have already updated all necessary times for 𝑤 from 𝑡𝑠𝑢. This is because if
we would again visit 𝑢 after 𝑇′ with residue class 𝑠, the same situation would arise again, so we would
not be able to get to any new residue classes and only get to the already visited residue classes with
a higher time.
It remains to estimate the work necessary to handle all updates by this algorithm. First, note that a
corridor from 𝑢 to 𝑤 is removed from the graph after at most ℓ𝑤 updates. This is because if it takes
more than ℓ𝑤 minutes for the watchman to visit 𝑢 from the current residue class 𝑠, then the watchman
at the other route will pass corner 𝑤 before that happens, and so we remove the corridor from 𝑢 to 𝑤
right away. Hence, any corridor will therefore be removed after at most ℓ𝑤 updates. Furthermore, we
can make the following case distinction:

• Every corridor from the current watchman route to itself will be updated only once and removed
immediately thereafter.

• If ℓ𝑢 ≥ ℓ𝑤, consider the first time 𝑡𝑢 that you visit corner 𝑢. After that time, there will remain at
most one edge from 𝑢 to the watchman route of 𝑤. Indeed, assume that the corridor from 𝑢 to
𝑤 remains, i.e. there a watchman occupies 𝑢 at the next time 𝑇 where a watchman occupies 𝑤.
For another corner 𝑤′ ≠ 𝑤 on the watchman route of 𝑤, the next time 𝑇′ that 𝑤′ is occupied by a
watchman will be different and differ by less than ℓ𝑤 from 𝑇. So, 𝑇 and 𝑇′ cannot be congruent
modulo ℓ𝑢, but we know that the watchman of the current route will be at 𝑢 at time 𝑇. Hence,
there cannot be a watchman at 𝑢 at time 𝑇′, meaning that the corridor from 𝑢 to 𝑤′ will be
removed. Letting 𝑢 vary, at most ℓ𝑢 corridors from the current watchman route to the watchman
route of 𝑤 will remain, and each of them produces at most ℓ𝑤 updates as argued above. This
yields a total of ℓ𝑢ℓ𝑤 updates.

• If ℓ𝑢 < ℓ𝑤, then the above argument does not work. However, we analogously see that there
at most ⌈ℓ𝑤/ℓ𝑢⌉ ≤ ℓ𝑤/ℓ𝑢 + 1 corridors remaining from 𝑢 to the watchman route of 𝑤, yielding at
most (ℓ𝑤/ℓ𝑢 + 1)ℓ𝑢 ≤ ℓ𝑤 + ℓ𝑢 ≤ 2ℓ𝑤 edges from the current watchman route to that of 𝑤. Since
each of them produces at most ℓ𝑢 updates since there are only ℓ𝑢 residue classes at corner 𝑢,
this yields 2ℓ𝑢ℓ𝑤 updates in total.

Summing over all ordered pairs 𝑖, 𝑗 of watchmen routes, we get at most ∑𝑖,𝑗 2ℓ𝑖ℓ𝑗 ≤ 2∑𝑖 ℓ𝑖 ∑𝑗 ℓ𝑗 = 2𝐿
2

updates in total for edges between watchmen routes, yielding a total runtime of 𝑂((𝑀 + 𝐿2) log(𝑀 +𝐿2)).

5/6



BOI 2021
Lübeck, Germany (online only)

April 23–26, 2021

Day 1
Task: watchmen

Spoiler

Some final remarks: The log-factors in the above solutions could be removed by an efficient imple-
mentation of Dijkstra which takes advantage of the fact that all times considered by the algorithm
will be of the order 𝑂(𝑁 + 𝐿).

6/6


